Lecture Notes, Lectures 12-13

5. 1 Household Consumption Sets and Preferences

$\mathrm{H}, \mathrm{i}=1,2, \ldots, \# \mathrm{H}$
$\mathrm{i} \in \mathrm{H}, \mathrm{X}^{\mathrm{i}} \subseteq R_{+}^{N}, \mathrm{u}^{\mathrm{i}}: \mathrm{X}^{\mathrm{i}} \rightarrow \mathrm{R}$ (fully represents \succsim_{i}), $r^{i} \in R_{+}^{N}, 1 \geq \alpha^{\mathrm{ij}} \geq 0$ for each $\mathrm{j} \in \mathrm{F}$.
$\mathrm{x} \in \mathrm{X}^{\mathrm{i}}, \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right)$
Consumption Sets
(C.I) X^{i} is closed and nonempty.
(C.II) $\mathrm{X}^{\mathrm{i}} \subseteq R_{+}^{N} . \mathrm{X}^{\mathrm{i}}$ is bounded below and unbounded above. That is, $\mathrm{x} \in \mathrm{X}^{\mathrm{i}}$ and $\mathrm{y} \geq \mathrm{x}$ (the inequality holds co-ordinatewise) implies $y \in X^{\mathrm{i}}$.
(C.III) X^{i} is convex.
X^{i} may be R_{+}^{N}.
$\mathrm{X}=\sum_{i \in H} \mathrm{X}^{\mathrm{i}}$.

Preferences

$\mathrm{x}, \mathrm{y} \in \mathrm{X}^{\mathrm{i}}, \quad$ "x $\succsim_{\mathrm{i}} \mathrm{y}$ " is read "x is preferred or indifferent to y (according to i)."

Utility Function

Let $\mathrm{u}^{\mathrm{h}}: \mathrm{X}^{\mathrm{h}} \rightarrow \mathrm{R}$. Then u^{h} is a utility function.
Definition: We will say that the utility function $\mathrm{u}^{\mathrm{h}}(\cdot)$ represents the preference order \succsim_{h} if for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}^{\mathrm{h}}, \mathrm{u}^{\mathrm{h}}(\mathrm{x}) \geq \mathrm{u}^{\mathrm{h}}(\mathrm{y})$ if and only if $\mathrm{x} \succsim_{\mathrm{h}} \mathrm{y}$. This implies that $\mathrm{u}^{\mathrm{h}}(\mathrm{x})>\mathrm{u}^{\mathrm{h}}(\mathrm{y})$ if and only if $\quad \mathrm{x} \succsim_{\mathrm{h}} \mathrm{y}$ and not $\left[\mathrm{y} \succsim_{\mathrm{h}} \mathrm{x}\right]$.

We will assume there is $u^{i}: X^{i} \rightarrow \mathbf{R}$ so that $u^{i}()$ represents \succsim_{i}.
Read $u^{i}(x) \geq u^{i}(y)$ wherever you see $x \succsim_{i} y$.

Weak monotonicity

(C.IV) (Weak Monotonicity) Let $\mathrm{x}, \mathrm{y} \in \mathrm{X}^{\mathrm{i}}$, with $\mathrm{x} \gg \mathrm{y}$, (that is, $x_{i}>y_{i}, i=1, \ldots, N$). Then $u^{i}(x)>u^{i}(y)$.

Continuity

(C.V) (Continuity) $u^{i}()$ is a continuous function. Equivalently, for every $x^{o} \in X^{i}$ the sets $A^{i}\left(x^{o}\right)=\left\{x \mid x \in X^{i}, x \succsim_{i} \mathrm{X}^{0}\right\}$ and $G^{i}\left(x^{o}\right)=\left\{x \mid x \in X^{\mathrm{i}}, \mathrm{X}^{0} \succsim_{\mathrm{i}} \mathrm{x}\right\}$ are closed. That is, the inverse images of closed subsets of R under $\mathrm{u}(\bullet)$ are closed.

Continuity of u^{i} allows us to use Corollary 2.2. What does the continuity assumption rule out? Lexicographic preferences provide an example of discontinuous preferences (which cannot be represented by a utility function; certainly not by a continuous utility function).

Example (Lexicographic preferences): $>_{\mathrm{L}} \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{N}}\right), \mathrm{y}=\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{N}}\right)$.
$x>_{L} y$ if $x_{1}>y_{1}$, or
if $x_{1}=y_{1}$, and $x_{2}>y_{2}$, or
if $x_{1}=y_{1}$, and $x_{2}=y_{2}$, and $x_{3}>y_{3}$, and so forth
$x \sim_{L} y$ if $x=y$.

Strict Convexity of Preferences

(C.VII) (strict convexity of preferences):

$$
u^{i}(x) \geq u^{i}(y), x \neq y, 0<\alpha<1 \text { implies } u^{i}(\alpha x+(1-\alpha) y)>u^{i}(y) .
$$

5.3 Choice and Boundedness of Budget Sets, $\widetilde{\mathbf{B}}^{\mathbf{i}}(\mathbf{p})$

Definition: x is an attainable aggregate consumption if $y+r \geq x \geq 0$ where $y \in Y$ and $\mathrm{r} \in R_{+}^{N}$ is the economy's initial resource endowment, so that y is an attainable production plan. Note that the set of attainable consumptions is bounded under P.II , P.III, P.V, P.VI.

Choose $c \in R_{+}$so that $|x|<c$ (a strict inequality) for all attainable consumptions x. Choose c c sufficiently large that $X^{i} \cap\left\{x\left|x \in R^{N}, c \geq|x|\right\} \neq \phi\right.$.
$\widetilde{M}^{i}(p)$ represents i's income as a function of p. We do not need precisely to specify $\widetilde{M}^{i}(p)$ at this point. When we do, income will be characterized as the value of the household endowment plus the value of the household share of firm profits $=\mathrm{p} \cdot \mathrm{r}^{\mathrm{i}}+\sum_{\mathrm{j}} \alpha^{\mathrm{i} j} \tilde{\pi}^{j}(p)$.

$$
\begin{aligned}
& \widetilde{B}^{i}(p)=\left\{x \mid x \in R^{N}, p \cdot x \leq \widetilde{M}^{i}(p)\right\} \quad \cap\{\mathrm{x}| | \mathrm{x} \mid \leq \mathrm{c}\} . \\
& \widetilde{D}^{i}(p) \equiv\left\{x \mid x \in \widetilde{B}^{i}(p) \cap \mathrm{X}^{\mathrm{i}}, \mathrm{x} \text { maximizes } \mathrm{u}^{\mathrm{i}}(\mathrm{y}) \text { for all } y \in \widetilde{B}^{i}(p) \cap \mathrm{X}^{\mathrm{i}}\right\} \\
& \widetilde{D}(p)=\sum_{i \in H} \widetilde{D}^{i}(p) .
\end{aligned}
$$

Lemma 5.1: $\widetilde{B}^{i}(p)$ is a closed and bounded (compact) set.
Lemma 5.2: Let $\widetilde{M}^{\mathrm{i}}(\mathrm{p})$ be homogeneous of degree 1. Then $\widetilde{B}^{i}(p)$ and $\widetilde{D}^{i}(p)$ are homogeneous of degree 0 .

$$
\mathrm{P} \equiv\left\{\mathrm{p} \mid \mathrm{p} \in \mathrm{R}^{\mathrm{N}}, \mathrm{p}_{\mathrm{i}} \geq 0, \mathrm{i}=1,2,3, \ldots, \mathrm{~N}, \sum_{i=1}^{N} p_{i}=1\right\}
$$

Positivity of Income

(C.VIII)

$$
\tilde{M}^{i}(p)>\min _{x \in X^{i} \cap\left\{y\left|y \in R^{N}, c \geq|y|\right\}\right.} p \cdot x \geq 0 \text { for all } p \in P .
$$

Example (The Arrow Corner): This example demonstrates the importance of (C.VIII). (C.VIII) is not fulfilled in the example resulting in discontinuous demand.

$$
\begin{aligned}
& X^{i}=R_{+}^{2} \\
& r^{i}=(1,0) \\
& \widetilde{M}^{i}(p)=p \cdot r^{i} . \\
& \quad p^{0}=(0,1) . \\
& \widetilde{B}^{i}\left(p^{0}\right) \cap X^{i}=\{(x, y) \mid c \geq x \geq 0, y=0\} \\
& p^{v}=\left(\frac{1}{v}, 1-\frac{1}{v}\right) \cdot \mathrm{p}^{v} \rightarrow \mathrm{p}^{0} . \\
& \widetilde{B}^{i}\left(p^{v}\right) \cap X^{i}=\left\{(x, y)\left|p^{v} \cdot(x, y) \leq \frac{1}{v},(x, y) \geq 0, c \geq|(x, y)| \geq 0\right\},\right. \\
& \text { (c, } 0) \in \widetilde{B}^{i}\left(p^{0}\right) \text { but there is no sequence }\left(x^{v}, y^{v}\right) \in \widetilde{B}^{i}\left(p^{v}\right) \text { so that }\left(x^{v}, y^{v}\right) \rightarrow(c, 0) \text {. } \\
& \text { For any sequence }\left(x^{v}, y^{v}\right) \in \widetilde{B}\left(p^{v}\right) \text { so that }\left(x^{v}, y^{v}\right)=\widetilde{D}^{i}\left(p^{v}\right),\left(x^{v}, y^{v}\right) \text { will converge to } \\
& \text { some (x } \left.\mathrm{x}^{*}, 0\right) \text { where } 0 \leq \mathrm{x}^{*} \leq 1 \text {. We may have }(\mathrm{c}, 0)=\widetilde{D}^{i}\left(p^{0}\right) \text {. Hence } \widetilde{D}^{i}(p) \text { need not be } \\
& \text { continuous at } \mathrm{p}^{0} \text {. This completes the example. }
\end{aligned}
$$

5.4 Demand behavior under strict convexity

Theorem 5.2: Assume C.I - C.V, C.VII, C.VIII. Let $\widetilde{M}^{i}(\mathrm{p})$ be a continuous function for all $\mathrm{p} \in \mathrm{P}$. Then $\widetilde{D}^{i}(p)$ is a well-defined, point-valued, continuous function for all $\mathrm{p} \in \mathrm{P}$.

Proof: Well defined: Compactness of $\widetilde{B}^{i}(\mathrm{p}) \cap \mathrm{X}^{\mathrm{i}}$ and continuity of $\mathrm{u}^{\mathrm{i}}(\cdot)$.
Unique (point valued): Strict convexity of preferences, C.VII.
Continuous
C.VIII $\Rightarrow \widetilde{M}^{\mathrm{i}}(\mathrm{p})>0$ for all $\mathrm{p} \in \mathrm{P}$.

Let $\mathrm{p}^{v} \in \mathrm{P}, v=1,2,3, \ldots, \mathrm{p}^{v} \rightarrow \mathrm{p}^{\circ}$. Show $\widetilde{D}^{i}\left(\mathrm{p}^{v}\right) \rightarrow \widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{0}\right) . \widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{v}\right)$ is a sequence in a compact set. Without loss of generality take a convergent subsequence, $\widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{\nu}\right) \rightarrow \mathrm{x}^{0}$. We must show that $\mathrm{x}^{\mathrm{o}}=\widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{\mathrm{o}}\right)$. Proof by contradiction.

Define $\hat{x}=\underset{x \in \text { Sin }^{i}\left\{\left\{y\left|y \in R^{N}, c>|y|\right\}\right.\right.}{\operatorname{argmin}} \mathrm{p}^{0} \cdot \mathrm{x}$.
$\mathrm{p}^{0} \cdot \widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{0}\right)>\mathrm{p}^{0} \cdot \hat{x}$ (by C.VIII).
Let $\alpha^{v}=\min \left[1, \frac{\widetilde{M}^{i}\left(p^{v}\right)-p^{v} \cdot \hat{x}}{p^{v} \cdot\left(\widetilde{D}^{i}\left(p^{o}\right)-\hat{x}\right)}\right]$. For v large, α^{v} is well defined. $0 \leq \alpha^{v} \leq 1 . \alpha^{v} \rightarrow 1$. Let $\mathrm{w}^{v}=\left(1-\alpha^{v}\right) \hat{x}+\alpha^{v} \widetilde{D}^{i}\left(p^{o}\right) . \mathrm{w}^{v} \rightarrow \widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{o}\right)$ and $\mathrm{w}^{v} \in \widetilde{B}^{\mathrm{i}}\left(\mathrm{p}^{v}\right) \cap \mathrm{X}^{\mathrm{i}}$. Suppose $\mathrm{x}^{0} \neq \widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{0}\right)$. Then $\mathrm{u}^{\mathrm{i}}\left(\widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{0}\right)\right)>\mathrm{u}^{\mathrm{i}}\left(\mathrm{x}^{0}\right)$. But for v large, $\mathrm{u}^{\mathrm{i}}\left(\mathrm{w}^{v}\right)>\mathrm{u}^{\mathrm{i}}\left(\widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{v}\right)\right)$ by continuity of u^{i} and the convergence of $\mathrm{w}^{v} \rightarrow \widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{0}\right), \widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{v}\right) \rightarrow \mathrm{x}^{\mathrm{o}}$. This is a contradiction, since $\widetilde{D}^{\mathrm{i}}\left(\mathrm{p}^{v}\right)$ maximizes $\mathrm{u}^{\mathrm{i}}(\cdot)$ in $\widetilde{B}^{i}\left(p^{v}\right) \cap X^{i}$.

Lemma 5.3: Assume C.I - C.V, C.VII, C.VIII. Then $\mathrm{p} \cdot \widetilde{D}^{i}(p) \leq \widetilde{M}^{\mathrm{i}}(\mathrm{p})$. Further, if $\mathrm{p} \cdot \widetilde{D}^{i}(p)<\tilde{M}^{\mathrm{i}}(\mathrm{p})$ then $\left|\widetilde{D}^{i}(p)\right|=\mathrm{c}$.

Proof: Budget or length is a binding constraint --- if not budget, then length.

